Fight disinformation: Sign up for the free Mother Jones Daily newsletter and follow the news that matters.

Conn had lost more than $100,000 on his regular cotton crop the previous year due to drought. Bt cotton would not only save him close to $20,000 by eliminating the need to spray for budworm and bollworm, it would also, according to Monsanto, jump yields by close to 20 percent. “I figured I could cut my costs $70 to $80 an acre, plus an increase in yields,” Conn says. Conn had long depended on industry experts and company seed representatives for farming advice, and he didn’t doubt Monsanto’s claims, which were backed up by university scientists who had tested the Bt seed in the field. Conn and other Brazos River Valley growers planted entire fields with the new crop, more than 20,000 acres in all.

As soon as the seedlings broke ground, Conn knew there was a problem. The plants were coming up spotty, with disappointing gaps in the field. At a heated meeting in June, growers accused Monsanto and Delta Pine of pushing junk seed. The salesmen answered that the seed had an unusually thick outer shell and needed more than the normal amount of moisture to germinate. Not to worry, they said. This was still an excellent product.

Then, in early July, Conn’s bug man brought more bad news. The Bt had worked fine on the budworm but was failing to hold back the bollworm. They would need to spray. A telegram arrived a few days later from Monsanto telling Conn and other cotton farmers what they already knew: Bug counts are high. Monitor your fields.

Five sprayings later, Conn harvested one of his worst cotton crops in memory, less than half his normal yield. He blames bad weather and the failure of the new seed to ward off a heavy bollworm infestation. “We all wanted to believe,” Conn says. “We all thought that this technology might be the magic bullet. Well, it didn’t work.”

The Promise of Bioengineered Food

Agricultural biotechnology, with its promise of high crop yields and dramatic reduction in pesticide use, has been touted as the way to feed the world’s escalating population and reduce environmental damage from farming. Ever since the mid-1970s, when scientists found an easy way to copy genes and then transfer them to other species, the potential benefits to agriculture seemed extraordinary. It didn’t take a visionary to see that corn engineered to produce more oil might have added value as animal feed or that soybeans packed with more protein might lead to a healthier human diet. Or that a cotton plant genetically engineered to produce its own pesticide could one day dramatically cut the volume of pesticides sprayed into the enviornment.

Monsanto Chairman and CEO Robert Shapiro makes a compelling case for genetic engineering. “How are you going to feed 10 to 12 billion people a decent diet when in fact there will not only be no more acreage available to produce that food, there may very well be less?” he asked the Society of Environmental Journalists in an October 1995 speech.

But Monsanto also views the fast-growing industry (20 percent annually by some estimates) as a way to stay a step ahead of increasing regulations on pesticides and maintain market dominance. Over the past two decades, Monsanto has positioned itself as the industry leader, spending at least $1.5 billion on genetic research in a bid to grab the lion’s share of what could be an $8 billion-a-year market for DNA-enhanced farm products. In 1996 alone, Monsanto spent close to $600 million either buying or heavily investing in small genetic engineering firms. The company is so enamored with the new technology that it is considering dropping its flagship chemical division.

Monsanto’s patented Bt cotton seed, along with its new soybean, was one of the first genetically engineered major commodity crops to be tried in commercial fields. Transgenic corn and potatoes were planted this past season; wheat is due next fall.

Monsanto and other biotech companies are working with public universities to develop biotech farm products in four basic areas: crops genetically engineered to produce their own insecticides, like Bt cotton; crops altered to resist disease; crops modified for better nutritional value; and crops engineered to withstand direct applications of popular weed killers.

Is Anyone Protecting Consumers?

There may be serious side effects to messing with Mother Nature. Scientists have raised concerns about the long-term impact of releasing new genes into the food supply, and they assert that little is known about the potential of transgenic foods to provoke allergic reactions in human beings. Of more immediate concern is the possibility that Bt crops will encourage strains of “superbugs” that are resistant to Bt and thus render it useless as a topical pesticide. Farmers — especially organic farmers — have long used Bt because it breaks down quickly and, while deadly to worms, is fairly benign to humans and soil.

Preventing pest resistance from occurring is the responsibility of the Environmental Protection Agency, which, along with the Food and Drug Administration and the U.S. Department of Agriculture, is charged with regulating new crops. But critics say the EPA has regularly caved in to pressure from onsanto and other seed companies and approved genetically engineered products without taking adequate measures to guard against pest resistance and other dangers.

Furthermore, the university scientists who initially test the seeds in the field are often faced with conflicts of interest. (Cuts in public funding for research and regulatory oversight have left the door open for industry — specifically a handful of companies including Monsanto, Northrup King, American Cyanamid, Ciba — Geigy, Rhone — Poulenc, and Dow — to lead the headlong rush into genetic engineering and control the entire lab-to-field-to-table process.) By giving money to a specific scientist at a specific university, a company can fund the field research it needs to determine the potential of a specific product. In many cases, the company then uses the scientist to attest to the virtues of the biotech product.

Farmers trying to decide whether to take the leap into biotech crops lean heavily on university researchers for scientific analysis of a product’s pros and cons. But if that recommendation and governmental regulation have been influenced by industry dollars — and university scientists working for companies lose sight of farmers’ interests — the process becomes tainted in a way that can harm agriculture and ultimately affect consumers.

The Farmer and The Professor

In October 1996, Monsanto reported at a stock analysts’ meeting in New York that preliminary results showed some of the farmers using Bt cotton had experienced 15 to 17 percent increases in yields; farmers using Monsanto’s transgenic soybean seed had high yields as well.

Due to its well-publicized foray into biotechnology, Monsanto’s stock rose 71 percent in 1996. The company claims that the Brazos River Valley crop and other Bt cotton failures scattered throughout the South are anomalies, brought on by unusually high bollworm counts. “The dynamics of a biological system like this are very complex,” says Randy Deaton, the product development manager for cotton at Monsanto. “We can put some explanations on why some farmers had to spray, but to be quite honest, there’s no hard data one way or the other.” Thirteen of Conn’s fellow cotton growers don’t buy that excuse and have filed a class-action suit against Monsanto, Delta Pine, and other companies, alleging they rushed Bt cotton to market and used a slick promotional campaign to cover up its flaws. The plaintiffs also claim the companies have misrepresented the success of last summer’s Bt cotton harvest in public statements. “I’ve met farmers in Louisiana, farmers in central Mississippi who won’t be planting this stuff again,” says Philip K. Maxwell, the plaintiffs’ attorney. “I was in one field where the Bt cotton had grown 9 feet high, straight up like a bean stalk with no fruit. It was crazy-looking. Freak cotton.”

Deaton denies that Monsanto misled farmers: “It would be very silly for us to do that. You might convince a farmer to buy Bt cotton once, but if it doesn’t work in the field like you said, he’s not going to come back next year. And we need return buyers.”

But Texas A&M entomologist John Benedict, who helped Monsanto research Bt cotton, says he and other scientists told the company in advance that there were problems with Bt cotton. “They should have done a few more years of research before taking the product public,” Benedict says. “There was a little too much hype and not enough caution.”

Monsanto had come to Texas A&M in 1990 with several different cotton seeds the company wanted to test in the field, each seed inserted with a different DNA sequence. It was Benedict’s job to determine which clone performed the best in a series of trials — plant growth, fruit production, insect control.

Starting in 1991, Benedict reported his annual findings back to the company, speaking mostly of Bt cotton’s great promise. But he says he also pointed out that Bt cotton wasn’t providing an airtight defense against the bollworm. “We got pretty high levels of damage in the test plots,” he says.

“I believed there were problems controlling bollworms with Bt cotton,” says Benedict. “That information never got passed on to the farmers, at least not sufficiently.”

In a Delta Pine-Monsanto brochure distributed to farmers, Bt cotton was touted as the nearest thing to fail-safe. Another promotional brochure contained a picture of the worms, with the caption: “You’ll see these in your cotton and that’s okay. Don’t spray.”


Mother Jones was founded as a nonprofit in 1976 because we knew corporations and billionaires wouldn't fund the type of hard-hitting journalism we set out to do.

Today, reader support makes up about two-thirds of our budget, allows us to dig deep on stories that matter, and lets us keep our reporting free for everyone. If you value what you get from Mother Jones, please join us with a tax-deductible donation today so we can keep on doing the type of journalism 2023 demands.

payment methods


Today, reader support makes up about two-thirds of our budget, allows us to dig deep on stories that matter, and lets us keep our reporting free for everyone. If you value what you get from Mother Jones, please join us with a tax-deductible donation today so we can keep on doing the type of journalism 2023 demands.

payment methods

We Recommend


Sign up for our free newsletter

Subscribe to the Mother Jones Daily to have our top stories delivered directly to your inbox.

Get our award-winning magazine

Save big on a full year of investigations, ideas, and insights.


Support our journalism

Help Mother Jones' reporters dig deep with a tax-deductible donation.